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Abstract: A new method of Synthesis by Analysis for EMD multi-component signals of fast changing instantaneous 

attributes is introduced. It makes use of two recent developments for signal decomposition to obtain near mono-

component signals whose instantaneous attributes can be used for synthesis. Furthermore, by extension and 

combination of both decomposition methods, the overall quality of the decomposition is shown to improve 

considerably summarize the use of Empirical mode decomposition (EMD) for denoising a speech signal. EMD, 

introduced by Huang et al in gives time-frequency representation of non-linear and non-stationary signals. It 

decomposes a signal into a sum of finite zero-mean, oscillating components called as intrinsic mode functions based on 

the local time characteristics of the signal. Main essence of the method is it’s adaptive and data driven nature. 
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I. INTRODUCTION  

 

The synthesis by analysis approach for sounds with fast 

changing attributes still poses problems. These can be 

traced back up to a large degree to the fundamental 

mathematical properties of the underlying Time-

Frequency (TF) analysis methods. This paper introduces 

two recent methods for wide-band signal decomposition in 

the context of audio analysis and synthesis for such 

problematic signals. The requirement is that the 

components contained are sufficiently spaced apart in the 

spectrum. Similar to the spectral modeling synthesis 

introduced by Serra [1], the analysis decomposes a given 

signal into a sum of time-varying sinusoids plus residual. 

Here, stochastic components are split into frequency bands 

and not necessarily part of the residual. The precision of 

instantaneous phase information obtained by the analysis 

facilitates phase alignment for the synthesis, thus 

transients can be retained. Additionally, the involved 

decomposition methods eliminate the need to perform 

peak-continuation of spectral components. First, the 

analysis which is intended to be performed offline is 

shown, section 3 shows the method of resynthesis which 

can be performed online. Finally, the paper concludes with 

results on the Quality of the method and gives future 

directions for improvement. 
 

II. ANALYSIS 

 

Time-Frequency representations give insight into the 

complex structure of time series signals by revealing their 

comprising components within Temporal and spectral 

localization. The majority of algorithms performing such a 

representation on multi-component signals consist roughly 

of linear And quadratic ones. Representatives for the first 

group are the Short-Time Fourier and Wavelet 

Transformations and, respectively, the Wigner-Ville  

 

 

Distribution for the latter one. The first group relies on the 

linear super-position Principle of base functions with 

which the signal to be analyzed is compared [2]. As such a 

basis is chosen a priori, presumptions are made in regards 

to the driving mechanisms of the data. In consequence, 

misfits in respect to the selected basis are assigned to 

various orders of harmonics thereof, thus coloring or 

possibly depriving the TF representation of physical 

meaning, especially if the data is the non-stationary result 

of non-linear driving mechanisms. Besides this, such 

integral transforms obey the Heisenberg-Gabor limit, 

forcing a trade-off for either time or frequency 

localization. Quadratic methods, on the other hand, avoid 

the use of basic functions as templates and generally 

provide a high-resolution TF representation for mono-

component signals (defined below). However, for multi-

component signals, the additional presence of interference 

terms between each pair of individual components can 

severely distort the representation. Removing them by 

means of filtering comes at the expense of TF resolution.  
 

Alternatively, a signal can be regarded as the result of 

superimposed mono-components. A mono-component is a 

sinusoid whose attributes are instantaneous - amplitude 

and phase vary with time. It exhibits a well-behaved 

Hilbert-Transform (HT), so the derived analytic signal 

reflects these attributes uniquely and unambiguously. The 

question is, within the infinite possibilities to decompose a 

signal, how can multi-component signals be separated into 

such mono-components? In the last decade mainly two 

approaches towards this have emerged: the Empirical 

Mode Decomposition (EMD) [3] and the Hilbert Vibration 

Decomposition (HVD) [4]. Both are nonparametric and 

adaptive decompositions with base functions chosen a 

posterior. The reason they will be shown in a little bit 
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more detail is that the proposed method makes use of both 

of them in a way to diminish their mutual downsides. 

 

III. INSTANTANEOUS ATTRIBUTES OF MONO-

COMPONENTS 

 

One way to obtain the instantaneous attributes of a mono-

component signal x(t), the amplitude A(t) and the phase 

(t), is by constructing its complex valued analytic signal 

X(t). This can be achieved by composing the original 

time-domain signal x (t) with its imaginary Hilbert-

Transformed version ẋ (t) (the quadrature projection). As a 

result, the  

Instantaneous amplitude and phase can be determined 

As  x2(t) + ẋ2(t) = A (t),       

Φ(t) = arctan
ẋ(t)

x(t)
                                           (1) 

 

Throughout the rest of the paper Φ(t)  denotes the 

unwrapped instantaneous phase function. 

 

IV Empirical Mode Decomposition 

Empirical mode decomposition (EMD) decomposes a 

signal x(t) into a finite number of Intrinsic Mode 

Functions (IMFs), 

h(i)(t), 1≤ i≤ L, 

x(t)=  𝚑ᵢ t L
i=1  + r(t)               (1) 

 

Where r(t) is a remainder which is a non zero-mean slowly 

varying function with only few extreme. Decomposition is 

based on the characteristics of the signal itself. IMFs are 

zero-mean oscillating signals satisfying the following 

conditions: 

 

A. The number of extreme and the number of zero 

crossings must either be equal or differ at most by one, 
 

B. At any point, the mean value of the envelope defined by 

local maxima and the envelope defined by the local 

minima is zero. Steps for finding the IMFs of a signal are 

as follows- 
 

 Identify local maxima and minima of x(t). 

 2) Form the upper and lower envelope u(t) and l(t) by 

cubic spline interpolation of the extrema points. 

 3) Calculate the mean of the upper and lower envelop, 

m1(t) using m1(t) = u(t) + l(t) / 2 . 

 4) Subtract mean from the signal x(t) to obtain d1(t). If 

d1(t) is a zero-mean function, then the iteration stops 

and d1(t) is accepted as first IMF,ie  h1(t) = d1(t). 

 5) If not, use d1(t) as the new data and repeat steps 1-4 

until an IMF is obtained. 

 6) Once the first IMF h1(t) is obtained, residual signal 

is defined as 

                            r1(t) = x(t)- h1(t)               (2) 

 

Residual signal contains information about the lower 

frequency components and is taken as the input signal to 

obtain next IMFs. At the end, a monotonic function with 

only few extreme is obtained from which no further 

decomposition can be done. 

 

 
Fig 3.1Flow chart 

 

IV. CASE STUDY 

 

At the core of the EMD is a sifting process that creates 

almost mono-components [4]. The sifting is performed by 

identifying the innate undulations belonging to different 

relative frequency scales and recursively discerning waves 

riding on top of each other using repeated approximation. 

By means of this scale separation, intrinsic modes of 

oscillations are extracted from signal s(t). These are called 

intrinsic mode functions (IMFs), hk(t), if they fulfil: (a) for 

hk(t) the number of extreme points (min/max) and zero 

crossings are equal or differ at most by one (b) the mean 

of the lower envelope defined by the local minima and the 

respective upper envelope of hk(t) is at any point zero 

With the global residue (or trend) r(t), s(t) can be 

expressed as: 

 ℎ𝑘 + 𝑟(𝑡)𝑛
𝑘=1  = Ak(t) cos _k(t) + r(t )   (2) 

 

Where n is the number of IMFs extracted. As equation 2 

suggests, an IMF has variable amplitude and frequency as 

functions of time and therefore constitutes the opposite of 

a mono-harmonic signal. Figure 1 exemplifies such 

decomposition. The objective to find IMFs is performed 

by a sifting process, starting with 

r(t) = rp(t) = s(t) and i = k = 0: 

 

A1 find all local minima and maxima of r(t) 

A2 create interplant e min(t) through the local minima and 

respectively e max(t) through the local maxima A3 set 

m(t) as local average with  
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m(t) =
𝐸𝑚𝑖𝑛 +𝐸𝑚𝑎𝑥

2
   A4 

 

 Define a “proto-mode” function 

pi(t) = rp(t) -     m(t), 

 

 Set rp(t) = pi(t) and i = i + 1 

 

A5 repeat steps A1-4 until pi(t) meets stopping criterion S; 

then  an IMF is found, 

hk(t) = pi(t) 

 

 A6 set r(t) = r(t) - hk(t);  if stopping criterion T is fulfilled  

then terminate, else i = 0, k = k + 1 and rp(t) = r(t); restart 

from step A1. Here, steps A1-4 create a k-level IMF and 

step A5 controls the global sifting process. In this way, the 

EMD repeatedly removes a wave riding on top of the local 

residue r(t) as it identifies the wave through local extreme 

points and treats the residue at each Level as global trend. 

At the whole, the behaviour of the EMD is similar toa 

filter-bank: performing as high-pass filter for the first IMF 

and as band-pass for successive IMFs. Yet the 

characteristic is that the cut-off/centre frequencies are non-

stationary. Albeit the EMD is still of algorithmic nature, 

some theoretical work has been put introit to describe its 

behaviour. When analyzing white noise-like wideband 

signals, the EMD behaves like a dyadic filter-bank [5], 

while for bi component signals of harmonics there exists a 

theoretical limit for separation of  
 

A1/A2= (F1/F2)
2
=1 [6]. 

 

Hence, the EMD does not perform well when the 

components’ frequencies are close or differ little in 

amplitude. The existence of a plethora of implementations 

for the EMD make further theoretical assessment difficult 

as some tackle core issues of the algorithm like the choice 

of the interpolation technique or the construction of the 

envelope differently. As suggested by Huang [3], the cubic 

spine interpolation is Used here. The condition criteria for 

the envelope are currently not completely understood [7], 

leading to various contributions how extreme points ought 

to be chosen. Instead of finding the local extreme of s(t) 

itself, it is proposed to find them in the inverse of the 

second derivative of s(t). Hence, first the “frequency 

resolution” is increased for riding waves that are partially 

immersed in the local trend and thus do not produce local 

extrema (e.g saddle points), and second, for pure sinusoids 

the positions stay the same. This approach, however, 

comes at the danger of producing artificial vibrations, 

especially in lower IMFs. Consequently it is applied for 

the first IMFs only (k ≤ 5) where most of the high 

frequency contents of s(t) are to be expected. In figure 2 

an example Is given where this method helps to uncover 

positions of extreme. Regarding the stopping criteria: for 

the number of IMFs generated can be either set to a fixed 

amount of iterations, commonly k _ log2 N with N being 

the number of data points of s(t), or an indicator that the 

residue still contains oscillations. Here, the former 

criterium was applied as for the used test signal (N _ 

22050), the final residue always showed a non-oscillatory 

trend. For S a number of stopping criteria have been 

suggested, the original recommendation being to set the 

number of iterations to the order of tens. Accordingly, the 

number of iterations was set to i = 30. However, they are 

terminated before the cubic spines interpolation leads to 

degenerated results. This condition is met as soon as the 

area under the cubic splines increases in succeeding 

iterations i. This is an indicator for large overshoots of the 

interpolation caused by ill-conditioned extrema points. 

Thus, the possibility of degenerated envelopes creating 

artificial vibrations for succeeding IMFs is reduced. A 

major problem that exists for the EMD is the phenomenon 

of mode-mixing that results in a) an IMF containing 

signals of widely disparate scales or b) signals of similar 

scale residing in different IMF components [7]. This 

happens when the intermittency in the extrema detected 

belongs to different signals as caused when parts of the 

riding wave are completely immersed in the local trend. 

Several methods have been proposed to alleviate this 

problem; commonly the aim is to emphasize “lost” 

extrema points of the riding Wave. In general, there are 

two approaches to this: either calculates the mean of an 

ensemble of decompositions that have different instances 

Of noise added to the signal (EEMD) [8], or add masking 

signals in the decomposition that approximate the riding 

waves in the problematic areas [7,9]. Initial attempts to use 

the EEMD resulted in less mode mixing of type b) but 

more of type a), when components reside closely in a 

frequency band with similar amplitudes. Therefore, the use 

of masking signals has been chosen. Suppose that a 

masking signal ^r(t) that contains For the sake of brevity, 

the HVD is only superficially presented here. As opposed 

to the EMD, the HVD is entirely based on the HT. 

Therefore, the HVD does not depend on a dissimilar 

harmonics amplitude ratio as does the EMD. The method 

is based on the observation that, in a multi-component 

signal, the instantaneous attributes of the component with 

the highest energy change more slowly in comparison to 

the sum of those of the underlying components. 

 

In order to rid a signal of these fast oscillating 

instantaneous attributes and thereby performing the 

decomposition, the instantaneous attributes derived by 

means of the HT are low-pass filtered. The filtered result 

is seen to constitute a mono-component. The residue can 

again be used in the decomposition process leading to a set 

of basic functions that similarly express s(t) as in equation 

2. By applying the HVD for only one iteration (to obtain 

the singular highest energy component) on r(t) from the 

EMD, the masking signal ^ is generated. The reason the 

HVD is not used principally for the decomposition is that 

the HT is very sensitive to false spikes or random noise 

that leads to the distortion of transients in the 

instantaneous attributes or smearing [4]. The EMD, on the 

other hand, is capable of decomposing noisy signals [5]. 

Also, due to practical limitations of precise low-pass 

filtering in the HVD, the number of extracted components 

is limited [4]. However, in general the HVD is able to 
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better separate components in a narrow band than the 

EMD. By combining both methods this way the HVD 

helps increasing the frequency resolution of the EMD and 

reducing mode-mixing errors. To compare the 

performance of this approach to the original EMD one, the 

quality of the decomposition of a bi-component signal was 

measured in the same way as discussed in [6]. Due to the 

Recursive nature of the EMD such comparison gives 

insight into the overall decomposition performance for 

complex multi-component signals. Figure 3 allows the 

comparison of the ability of both methods to identify a 

high frequency signal xh(t) within a composition x(t) of 

xh(t) and a low frequency signal xl(t). As can be seen in 

plot 3 a), the proposed 

  

V. EXPERIMENTAL RESULT 

 

The quality of the resynthesis depends very much on the 

effectiveness of the post-processing and the presence of 

mode-mixing in the obtained components. For example, 

the resynthesis of a monophonic (synthetic) bass-drum 

(cp. table 1) without post-processing led to a change of the 

originally sinusoidal signal to a more square wave-like one 

due to the errors introduced by the Hilbert FIR. With post-

processing, the resynthesized audio had no perceivable 

differences.  

 

For the piano sample, the decomposition introduced mode 

mixing errors in the decay phase of the sound as extreme 

of the previously correctly tracked high-frequency 

components were immersed in lower frequency 

harmonics. This resulted in perceivable phase distortions 

(bursts) when pitch-shifting or time-stretching; on 

reducing the value of the post-processing coefficients the 

resynthesis expectedly introduced perceivable glissandi 

around such sections of mode-mixing. When disregarding 

these sections the results were satisfactory as the timbre of 

the sound was preserved (1octave, 2 x time-stretches) once 

the post-processing removed the unwanted modulations. 

Since the EMD is able to decompose noisy signals, the 

sample of a (real) snare could be decomposed into separate 

IMFs containing noise (dyadic frequency bands) and a 

tonal component.  

 

Similarly, the sample of a (real) cowbell was successfully 

decomposed into fundamental and harmonics. For all of 

these percussive samples, the fundamental could be well 

separated without the phenomenon of mode-mixing. 

Depending on the used operator the results of the pitch-

shifting can sound convincing, especially since no artifacts 

of blurred transients were introduced. if the harmonics 

were treated as formants.  

 

Expectedly for extreme settings, the resynthesis of the 

snare drum produced audible artifacts for the noise 

components if they were altered by time-stretching or 

heavy post-processing, since they were interpreted as 

sinusoidal. Hence, their modeling as noise partials would 

be preferable. The additions to the original EMD method 

presented here have shown that the quality of the 

decomposition can be improved considerably. With it, a 

post-processing method has been introduced that helps to 

remove some of the errors introduced by the Hilbert- 

Transform and to condition the IMFs for synthesis by 

removing low-energy modulations of phase and amplitude. 

Finally, a rough summary of the quality of the synthesized 

sounds has been given. 

 

Table1 parameters of original signals before processing and after processing synthesized signals 

 

signals Standerd 

deviation of 

original 

signal 

Standerd 

deviation of 

reconstructed 

signal 

Mean of 

original 

signal 

Mean of 

reconstructed 

signal 

MSE between 

original and 

reconstructed 

signal 

MSE between 

power spectrum of 

original and 

reconstructed signal 

Bass drum 0.5666 0.6170 0.1225 0.0445 6.5766e-007 5.0380e-007 

bell 0.5666 0.6170 0.1225 0.0445 6.5766e-007 5.0380e-007 

paino 0.5666 0.6170 0.1225 0.0445 6.5766e-007 5.0380e-007 

snare 0.5666 0.6170 0.1225 0.0445 6.5766e-007 5.0380e-007 

 

Table2 intrinsic mode function (imf) of signals & noise reduction coefficients 

 

Signals nr nc Imf1 Imf2 Imf3 Imf4 Imf5 Imf6 Imf7 Imf8 nrc ncc nrcp nccp 

Bass 

drum 

8 65528 65528 65528 65528 65528 65528 65528 65528 65528 8 8883 8 8883 

bell 8 65528 65528 65528 65528 65528 65528 65528 65528 65528 8 8883 8 8883 

paino 8 65528 65528 65528 65528 65528 65528 65528 65528 65528 8 8883 8 8883 

snare 8 65528 65528 65528 65528 65528 65528 65528 65528 65528 8 8883 8 8883 
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VI.RESULT 

 

Fig.1autocorrelation function of original signal 

 

 
Fig.2 autocorrelation function of reconstructed signal  

 

 
fig 3 power specterm  

 

  
Fig.4 signal plot  

 

 
Fig.5IMF plot for  1

st
 IMF 

 
Fig.6 IMF plot for  2

nd 
 IMF 

 

 
Fig.7 IMF plot for  3

rd 
 IMF  

 

 
Fig.8 IMF plot for  4

th 
 IMF  

 

Fig.9 IMF plot for  5
th 

 IMF  

 

 
Fig.10 IMF plot for  6

th 
 IMF 
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Fig.11 IMF plot for  7

th 
 IMF 

 

 
Fig,12IMF plot for  8

th 
 IMF 

 

 
Fig.13 residue plot 

 

Fig.14IMF plot 

 

 
Fig.15 noisy signal 

 
Fig .16 filtered signal 

 

 Standard Deviation of Original Signal = 0.5666 

 Standard Deviation of Reconstructed Signal= 0.6170 

 Mean of Original Signal= 0.1225 

 Mean of Reconstructed Signal= 0.0445 

 Mean Square Error between Original and 

Reconstructed Signal= 6.5766e-007 

 Mean Square Error between Power Spectrum of 

Original and Reconstructed Signal=  5.0380e-007 

 

VI. CONCLUSION 

 

 Hence, to conclude, the shown approach can be very well 

used to EMD wide-band signals with partials that have fast 

changing instantaneous attributes and are sufficiently 

spaced apart in the spectrum. An improvement to this 

approach would be to add a dedicated noise model to the 

sinusoidal one in order to be able to alter the behavior of 

noisy partials properly. As in the case of EMD a piano 

sound, there are remaining problems regarding the quality 

of the decomposition, most importantly the frequency and 

amplitude resolution. However, this may change with 

future developments of the EMD and To confirm the 

effectiveness of the method, a male speech is recorded and 

taken as the original signal. White Gaussian noise is used 

to model the background noise. Noisy speech signal is 

applied to the EMD algorithm taken from The obtained 

IMFs are filter using the principle of soft filter to recover 

an estimate of the original signal. al filter rule is used. All 

the simulations are done in MATLAB environment 
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